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LT is not exploited in software 
products

• Very few software products make use of 
language technology (LT)

• Not because there is little need

• Just because it is complicated to integrate 
modules for a wide array of languages

• Different pieces of code have to be integrated 

• Only Microsoft manages to offer fairly good 
support for many languages



Linguist are poor software integrators?

• Nobody expects that the linguists could solve 
this problem

• Linguists make analyzers for their (favourite) 
language using the tools for which they have 
support

• Many different tools are used on the whole

• No common market place



Software producers are poor linguists?

• Software producers speak only few languages 
(often only English)

• They are not familiar with the diversity of 
languages (types of inflection, compounding, 
grammar, pragmatics, ...)

• Products start in an English environment, and 
are only afterwards adjusted for other 
languages



Division of labour has been difficult

• Interfacing programming code is tedious

• Interfacing alien code is time consuming and 
risky (it can crash the whole application)

• In order to support many languages, many 
different subroutines need to be interfaced

• The work of a linguist suits only one (or some) 
formalism and its implementation



Finite-state transducers (FST)

• FSTs are well-known abstract devices with states 
and transitions (optionally also weights)

• FSTs read strings and output (possibly zero, one 
or more) strings

• Xerox and ATT have shown that many aspects of 
language can be efficiently handled with FSTs

• Humans are poor in writing FSTs – but compilers 
transform lexicons and rules into FSTs



HFST

• Helsinki Finite-State Transducer technology 
(HFST) is a part of the FIN-CLARIN project

• HFST produces open source tools and 
language modules (as FSTs)

• HFST is cooperation between several FST 
research groups and it integrates work of 
various parties



HFST team

• Krister Lindén (responsible researcher)

• Anssi Yli-Jyrä and Måns Huldén (post doc)

• Miikka Silfverberg, Tommi Pirinen (PhD 
students)

• Erik Axelson and Sam Hardwick 
(programmers)

• Kimmo Koskenniemi (consulting and raising 
funds)



HFST for developers of algorithms

• Dozens of FST software packages have been 
developed during the last decades, some are 
no more maintained

• In a package, some algorithms might be good, 
other ones less optimal

• Some are proprietary, some open source

• Developing a robust FST package is laborious 
and requires skill and insight



HFST combines some of the best 
existing FTS software

• SFST by Helmut Schmid (Stuttgart)

• OpenFST (Google research)

• Foma by Måns Huldén (Helsinki)

• Etc. In future

• Packages coexist and can be used through a 
unified interface in combinations if so desired

• Improved and new algorithms can be 
developed and added 
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HFST as platform for compilers

• The compiler for a grammar or lexicon 
formalism can be implemented on top

• The details of individual FST packages are 
hidden under the HFST interface

• The author of the compiler need not know 
which underlying package is being used (but 
may choose individually even single 
algorithms when needed)



Difficulties in using FST packages 
directly

• Some packages are good but ...

• Using a package directly is an undoable 
commitment, no way to change into another

• Each package has idiosyncratic concepts and 
conventions, many are difficult to detect

• One’s own program starts to reflect these 
idiosyncrasies and cannot be transferred to 
another



HFST as platform for lexicons and 
grammars

• As a proof, a lexicon compiler HFST-LEXC and a 
two-level rule compiler HFST-TWOLC were 
made on top of the HFST interface

• Sámi lexicons and two-level grammars (of the 
Divvun project) were used as a test case

• The SFST and the Xerox regular expression 
languages can be used for generating all kinds 
of special applications



HFST for the linguist

• Different styles, cascaded rules and parallel 
two-level rules are supported and the end 
result is quite similar FST

• Weighted (statistical) and unweighted (rule-
based) descriptions are supported

• Statistical and rule-based models can even be 
combined

• Morphology and POS tagging now proven



HFST run-time FST

• No matter how the FSTs are compiled, the end 
result is a compacted fast runtime FST (some 
100,000 words/s)

• Long range dependencies are handled with flag 
diacritics which make some FSTs significantly 
smaller (at a very slight speed penalty)

• All kinds of linguistic tasks (spelling, hyphenation, 
search stem generation, ...) are technically similar 
FSTs which the same (very simple) code runs



HFST run-time code

• The code for running the run-time FSTs is 
short and is provided in several programming 
languages (C++, Java, Python, …)

• This code is released using the Apache 
licensese

• Code can be combined with any software 
(commercial or open source)



HFST through conversion

• In addition to HFST-LEXC and HFST-TWOLC, 
other modules can be transformed into the 
these formats and then compiled into FSTs

• Spellers for some 100 languages have been 
converted in this way into HFST (from 
Hunspell and other formalisms)

• Conversions from other formats (such as 
Malaga) would be straight-forward



HFST both for Business 
and Open Source

• An FST is as proprietary/free as its source

• The tool for creating a proprietary FST may 
quite well be GNU GPL (no contamination)

• The runtime can be embedded both in 
commercial and open source software

• Interface to OpenOffice and Mozilla Firefox 
and Thunderbird has been built
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Conclusion

• For a class of LT tasks, a common FST format, a 
supply of tools and a runtime for common 
programming languages creates a new kind of 
a market place for

– LT companies

– Software producers and integrators

• Peaceful coexistence with open source tools

• Open source modules create a market for 
higher quality commercial products


