
HFST: 
A new division of labour between 

software industry and linguists

Kimmo Koskenniemi
University of Helsinki



LT is not exploited in software 
products

• Very few software products make use of 
language technology (LT)

• Not because there is little need

• Just because it is complicated to integrate 
modules for a wide array of languages

• Different pieces of code have to be integrated 

• Only Microsoft manages to offer fairly good 
support for many languages



Linguist are poor software integrators?

• Nobody expects that the linguists could solve 
this problem

• Linguists make analyzers for their (favourite) 
language using the tools for which they have 
support

• Many different tools are used on the whole

• No common market place



Software producers are poor linguists?

• Software producers speak only few languages 
(often only English)

• They are not familiar with the diversity of 
languages (types of inflection, compounding, 
grammar, pragmatics, ...)

• Products start in an English environment, and 
are only afterwards adjusted for other 
languages



Division of labour has been difficult

• Interfacing programming code is tedious

• Interfacing alien code is time consuming and 
risky (it can crash the whole application)

• In order to support many languages, many 
different subroutines need to be interfaced

• The work of a linguist suits only one (or some) 
formalism and its implementation



Finite-state transducers (FST)

• FSTs are well-known abstract devices with states 
and transitions (optionally also weights)

• FSTs read strings and output (possibly zero, one 
or more) strings

• Xerox and ATT have shown that many aspects of 
language can be efficiently handled with FSTs

• Humans are poor in writing FSTs – but compilers 
transform lexicons and rules into FSTs



HFST

• Helsinki Finite-State Transducer technology 
(HFST) is a part of the FIN-CLARIN project

• HFST produces open source tools and 
language modules (as FSTs)

• HFST is cooperation between several FST 
research groups and it integrates work of 
various parties



HFST team

• Krister Lindén (responsible researcher)

• Anssi Yli-Jyrä and Måns Huldén (post doc)

• Miikka Silfverberg, Tommi Pirinen (PhD 
students)

• Erik Axelson and Sam Hardwick 
(programmers)

• Kimmo Koskenniemi (consulting and raising 
funds)



HFST for developers of algorithms

• Dozens of FST software packages have been 
developed during the last decades, some are 
no more maintained

• In a package, some algorithms might be good, 
other ones less optimal

• Some are proprietary, some open source

• Developing a robust FST package is laborious 
and requires skill and insight



HFST combines some of the best 
existing FTS software

• SFST by Helmut Schmid (Stuttgart)

• OpenFST (Google research)

• Foma by Måns Huldén (Helsinki)

• Etc. In future

• Packages coexist and can be used through a 
unified interface in combinations if so desired

• Improved and new algorithms can be 
developed and added 



Design of the HFST

SFST
finite-state
calculus

FOMA 
finite-state
calculus

OpenFST
finite-state
calculus

HFST interface

implemen-
tation of
SFST
reg exp
formalism

implemen-
tation of
XFST
reg exp
formalism

implemen-
tation of
LEXC
lexicon
compiler

implemen-
tation of
TWOLC
rule
compiler

… etc …

… etc …



HFST as platform for compilers

• The compiler for a grammar or lexicon 
formalism can be implemented on top

• The details of individual FST packages are 
hidden under the HFST interface

• The author of the compiler need not know 
which underlying package is being used (but 
may choose individually even single 
algorithms when needed)



Difficulties in using FST packages 
directly

• Some packages are good but ...

• Using a package directly is an undoable 
commitment, no way to change into another

• Each package has idiosyncratic concepts and 
conventions, many are difficult to detect

• One’s own program starts to reflect these 
idiosyncrasies and cannot be transferred to 
another



HFST as platform for lexicons and 
grammars

• As a proof, a lexicon compiler HFST-LEXC and a 
two-level rule compiler HFST-TWOLC were 
made on top of the HFST interface

• Sámi lexicons and two-level grammars (of the 
Divvun project) were used as a test case

• The SFST and the Xerox regular expression 
languages can be used for generating all kinds 
of special applications



HFST for the linguist

• Different styles, cascaded rules and parallel 
two-level rules are supported and the end 
result is quite similar FST

• Weighted (statistical) and unweighted (rule-
based) descriptions are supported

• Statistical and rule-based models can even be 
combined

• Morphology and POS tagging now proven



HFST run-time FST

• No matter how the FSTs are compiled, the end 
result is a compacted fast runtime FST (some 
100,000 words/s)

• Long range dependencies are handled with flag 
diacritics which make some FSTs significantly 
smaller (at a very slight speed penalty)

• All kinds of linguistic tasks (spelling, hyphenation, 
search stem generation, ...) are technically similar 
FSTs which the same (very simple) code runs



HFST run-time code

• The code for running the run-time FSTs is 
short and is provided in several programming 
languages (C++, Java, Python, …)

• This code is released using the Apache 
licensese

• Code can be combined with any software 
(commercial or open source)



HFST through conversion

• In addition to HFST-LEXC and HFST-TWOLC, 
other modules can be transformed into the 
these formats and then compiled into FSTs

• Spellers for some 100 languages have been 
converted in this way into HFST (from 
Hunspell and other formalisms)

• Conversions from other formats (such as 
Malaga) would be straight-forward



HFST both for Business 
and Open Source

• An FST is as proprietary/free as its source

• The tool for creating a proprietary FST may 
quite well be GNU GPL (no contamination)

• The runtime can be embedded both in 
commercial and open source software

• Interface to OpenOffice and Mozilla Firefox 
and Thunderbird has been built



Research
team

Language 
technology 
company

Government
office

Speller FST

Hyphenator 
FST

Search Stem 
FST

Named 
Entity FST

Thesaurus 
FST

Software
producer

Service
Provider

Software
integrator

End User



Conclusion

• For a class of LT tasks, a common FST format, a 
supply of tools and a runtime for common 
programming languages creates a new kind of 
a market place for

– LT companies

– Software producers and integrators

• Peaceful coexistence with open source tools

• Open source modules create a market for 
higher quality commercial products


